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ABSTRACT 

In this paper improved evolutionary algorithm (IEA) and enriched firefly algorithm (EFA) has been used 
to solve optimal reactive power problem. In the improved evolutionary algorithm by using the set of route 
vectors the search has been enhanced and in the enriched firefly algorithm differential evolution 
algorithm has been mingled to improve the solution. Both the proposed IEA&EFA has been tested in 
practical 191 (Indian) utility system and simulation results show clearly about the better performance of 
the proposed algorithm in reducing the real power loss with control variables within the limits. 
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1. INTRODUCTION 

To till date various methodologies had been applied to solve the Optimal Reactive Power problem. The key 

aspect of solving Reactive Power problem is to reduce the real power loss. Previously many types of 

mathematical methodologies like linear programming, gradient method (Alsac and Scott, 1973; Hobson, 1980; 

Lee et al., 1985; Monticelli et al., 1987; Deeb and Shahidehpur, 1990; Lee et al., 1993; Mangoli and Lee, 1993; 

Canizares et al., 1996) has been utilized to solve the reactive power problem, but they lack in handling the 

constraints to reach a global optimization solution. In the next level various types of evolutionary algorithms 

(Eleftherios et al., 2010; Hu et al., 2010; Berizzi et al., 2012; Roy et al., 2012) has been applied to solve the 

reactive power problem. But each and every algorithm has some merits and demerits. This paper proposes 

improved evolutionary algorithm (IEA) and enriched firefly algorithm (EFA) to solve optimal reactive power 

problem. In the improved evolutionary algorithm by using the set of route vectors the search has been 

enhanced and in the enriched firefly algorithm differential evolution algorithm has been mingled to improve the 
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solution. Both the proposed IEA&EFA has been tested in practical 191 (Indian) utility system. The simulation 

results show   that the proposed approach outperforms all the entitled reported algorithms in minimization of real 

power loss. 

 

2. OBJECTIVE FUNCTION 

2.1. Active Power Loss 

The objective of the reactive power dispatch problem is to minimize the active power loss and can be 

defined in equations as follows: 

F = 𝑃𝐿 = ∑   gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij)              (1) 

Where F- objective function, PL – power loss, gk - conductance of branch,Vi and Vj  are voltages at buses i,j, 

Nbr- total number of transmission lines in power systems.  

 

2.2. Voltage Profile Improvement 

To minimize the voltage deviation in PQ buses, the objective function (F) can be written as: 

F = 𝑃𝐿 +ωv × VD          (2) 

Where VD - voltage deviation,    ωv- is a weighting factor of voltage deviation. 

And the Voltage deviation given by: 

VD = ∑ |Vi − 1|
Npq
i=1           (3) 

Where Npq- number of load buses                   

 

 2.3. Equality Constraint  

The equality constraint of the problem is indicated by the power balance equation as follows: 

                                       PG = PD + PL             (4) 

Where PG- total power generation, PD  - total power demand. 

 

 2.4. Inequality Constraints  

The inequality constraint implies the limits on components in the power system in addition to the limits 

created to make sure system security. Upper and lower bounds on the active power of slack bus (Pg), and 

reactive power of generators (Qg) are written as follows: 

                            Pgslack
min ≤ Pgslack ≤ Pgslack

max               (5) 

                           Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng            (6) 

Upper and lower bounds on the bus voltage magnitudes (Vi) is given by:          

                           Vi
min ≤ Vi ≤ Vi

max , i ∈ N                (7) 

Upper and lower bounds on the transformers tap ratios (Ti) is given by: 

                          Ti
min ≤ Ti ≤ Ti

max , i ∈ NT               (8) 

Upper and lower bounds on the compensators (Qc) is given by: 

                            Qc
min ≤ Qc ≤ QC

max , i ∈ NC            (9) 

Where N is the total number of buses,  Ng  is the total number of generators,  NT is the total number of 

Transformers,  Nc is the total number of shunt reactive compensators. 
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3. IMPROVED EVOLUTIONARY ALGORITHM (IEA) 

The objective space of an IEA is degenerated into a set of sub objective spaces by a set of route vectors, 

and then obtained solutions are regarded as by these route vectors to make each sub objective space have a 

solution. For a given set of route vectors ( 1,  2,   ,   ) and the set of existing obtained solutions being 

population (POP), these solutions will be regarded as by the following formulation: 

𝑃 = { | ∈ 𝑃 𝑃,  ( ( ),   ) =    
1    

* ( ( ),   )+},            (10) 

 ( ( ),   ) =
   ( ( )  ) 

‖  ‖ ‖ ( )  ‖
,  = 1,   , ,                    

Where  = ( 1,   ,   )is a reference point and   =    {*  ( )| ∈  +,  ( ( ),  
 )} is the cosine of the 

angle between    and ( ) −   . These solutions are alienated into N classes by the formulation (6.1) and the 

objective space   divided into N sub objective spaces  1,   ,   , where   ( = 1,   ,  ) is  

  = { ( )| ∈  ,  ( ( ),  
 ) =    

1    
* ( ( ),   )+}           (11) 

If  𝑃 (1 ≤  ≤  ) is empty, a solution is arbitrarily selected from Population and put to 𝑃 . 

Solutions are more to be anticipated to be designated to create new-fangled solutions, and then their sub 

objective spaces can quickly find their optimal solutions. In order to attain the goalmouth, the crowding 

distance is used to calculate the fitness value of a solution for the selection operators. Since these solutions 

are controlled by other solutions and the objective vectors of those solutions do not locate in this sub objective 

spaces of these solutions, so in the term of the objective vector, these solutions have rarer solutions in their 

frame than other solutions. Thus, by using the crowding distance to calculate the fitness value of a solution, 

the fitness values of these solutions are better than those solutions and these solutions are more likely to be 

designated to create new-fangled solutions. 

Algorithm of improved evolutionary algorithm for reactive power dispatch problem 

Step 1. Initialize . given N route vectors ( 1,  2,   ,   ), arbitrarily produce an preliminary population POP(k) , 

and its size is N ; let k =0 , set   =    *  ( )| ∈ 𝑃 𝑃( )+,1 ≤  ≤    

Step 2 .Fitness. Solutions of POP ( ) are firstly alienated into   classes by the equation (10) and the fitness 

value of each solution in POP ( ) is computed by the crowding distance. Then, some improved solutions are 

choosing from the population POP ( ) and place into the population POP. In this research, binary tournament 

selection is utilized. 

Step 3. New-fangled solutions. Apply genetic operators to the parent population to produce offspring. The set 

of all these offspring is represented as  . 

Step 4. Modernize. Z is first modernized. For each  = 1,   , , i  j      { j( )| ∈  },      s    j =  i { j( )| ∈

 } .The solutions of P P( )    are first categorized by the equation (10); then N best solutions are picked by 

the update strategy and put into P P( + 1)      =  + 1. 

Step 5 .End. If stop condition is satisfied, stop; or else, go to Step 2. 
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4. ENRICHED FIREFLY ALGORITHM (EFA)  

In this method (Storn and Price, 1997) each solution in a population represents a solution which is located 

arbitrarily within a specified penetrating space. The ith solution,    , is represented as follows: 

  ( ) = {  1( ),   2( ),   ,    ( )}                            (12) 

Where ,    ( )  is the vector with k = 1, 2, 3, ..., d, and t is the time step. Initially, the fitness value of each 

solution was evaluated. The fitness value of each ith solution in this sub-population was then compared with its 

jth neighbouring solution. If the fitness value of the neighbouring solution was better, the distance between 

every solution would then be calculated using the standard Euclidean distance measure. The distance was 

used to compute the attractiveness,   : 

Where  

 =    
     

 
                                                (13) 

Where     ,   and     are the predefined attractiveness, light absorption coefficient, and distance between 

ith solution and its jth neighbouring solution. Later, this new attractiveness value was used to update the 

position of the solution, as follows: 

   =    +  (   −    ) +  ( −
1

2
)          (14) 

Where   and   are uniformly distributed random values between 0 to 1. Thus, the updated attractiveness 

values assisted the population to move towards the solution that produced the current best fitness value . 

On the other hand, the second sub-population contained solutions that produced less significant fitness 

values. The solutions in this population were subjected to undergo the evolutionary operations of DE method. 

Firstly, the trivial solutions were produced by the mutation operation performed on the original counterparts. 

The ith trivial solution,    , was generated based on the following equation: 

  ( ) = {  1( ),   2( ),   ,    ( )}              (15) 

  ( ) =      ( ) +   (  1( ) −   2( ))    (16) 

Where      ( )  is the vector of current best solution, F is the mutation factor,   1( ) and   2( )  are arbitrarily 

chosen vectors from the adjacent solutions. Following, the offspring solution was produced by the crossover 

operation that involved the parent and the trivial solution. The vectors of the ith offspring solution, Y i, were 

created as follows 

  ( ) = {  1( ),   2( ),   ,    ( )}                               (17) 

  ( ) = {
  ( )         

  ( )           
                                       (18) 

Where R is a regularly distributed random value between 0 to 1 and C R is the predefined crossover 

constant . As the population of the offspring solution was produced, a selection operation was required to keep 

the population size constant. The operation was performed as follows: 

  (  1) = {
  ( )     (  ( ))  ≤  (  ( ))

  ( )      (  ( ))    (  ( ))
             (19) 

Enriched Firefly Algorithm (EFA) for optimal dispatch problem. 

Input: Arbitrarily initialize position of d dimension problem:     

Output: Position of the approximate global optima:    
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Begin 

Initialize population; Evaluate fitness value; 

     Select current best solution; 

For    1 to max 

Sort population based on the fitness value; 

                ( )                     ( )    

For i   0 to number of       solutions 

For j   0 to number of        solutions 

If ( (  )   (  )) then 

Compute distance and attractiveness; 

Update position; 

End If 

End For 

End For 

For i   0 to number of        solutions 

Create trivial solution,   ( ); 

Perform crossover,   ( ); 

Perform selection,   ( ); 

End For 

         (     ,       ); 

     Select current best solution; 

t  + 1   1; 

End For 

End Begin 

 

5. SIMULATION STUDY  

Both algorithms have been tested in practical 191 test system and the following results has been obtained 

In Practical 191 test bus system – Number of Generators = 20, Number of lines = 200, Number of buses = 

191 Number of transmission lines = 55. Table 1&2 shows the optimal control values of practical 191 test 

system obtained by IEA and EFA methods. And table 3 shows the results about the value of the real power 

loss by obtained by both proposed improved evolutionary algorithm and enriched firefly algorithm. Although 

both the projected algorithms successfully applied to the problem IEA has the edge over EFA in reducing the 

real power loss. 

 

Table-1. Optimal Control values of Practical 191 utility (Indian) system by IEA method 

VG1 1.17 VG 11 0.90 

VG 2 0.81 VG 12 1.01 
VG 3 1.06 VG 13 1.04 
VG 4 1.01 VG 14 0.98 
VG 5 1.10 VG 15 1.01 
VG 6 1.16 VG 16 1.08 
VG 7 1.12 VG 17 0.90 
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VG 8 1.01 VG 18 1.01 
VG 9 1.10 VG 19 1.13 
VG 10 1.04 VG 20 1.11 

                               

T1 1.01 T21 0.90 T41 0.90 

T2 1.06 T22 0.96 T42 0.92 
T3 1.07 T23 0.98 T43 0.95 
T4 1.10 T24 0.91 T44 0.93 
T5 1.02 T25 0.92 T45 0.96 
T6 1.06 T26 1.00 T46 0.91 
T7 1.01 T27 0.93 T47 0.97 
T8 1.04 T28 0.92 T48 1.03 
T9 1.02 T29 1.06 T49 0.92 
T10 1.01 T30 0.92 T50 0.91 
T11 0.92 T31 0.96 T51 0.94 
T12 1.05 T32 0.95 T52 0.92 
T13 1.04 T33 1.04 T53 1.02 
T14 1.03 T34 0.92 T54 0.91 
T15 1.01 T35 0.90 T55 0.90 
T19 1.08 T39 0.98   
T20 1.08 T40 0.90   

 

Table 2. Optimal Control values of Practical 191 utility (Indian) system by EFA method 

VG1 1.11 VG 11 0.90 

VG 2 0.79 VG 12 1.01 
VG 3 1.01 VG 13 1.04 
VG 4 1.04 VG 14 0.92 
VG 5 1.09 VG 15 1.01 
VG 6 1.15 VG 16 1.04 
VG 7 1.12 VG 17 0.90 
VG 8 1.01 VG 18 1.02 
VG 9 1.10 VG 19 1.11 
VG 10 1.02 VG 20 1.10 

                                

T1 1.03 T21 0.90 T41 0.90 

T2 1.07 T22 0.94 T42 0.92 
T3 1.08 T23 0.93 T43 0.91 
T4 1.08 T24 0.91 T44 0.92 
T5 1.01 T25 0.93 T45 0.94 
T6 1.03 T26 1.00 T46 0.91 
T7 1.07 T27 0.92 T47 0.96 
T8 1.06 T28 0.92 T48 1.03 
T9 1.05 T29 1.01 T49 0.91 

T10 1.02 T30 0.92 T50 0.92 
T11 0.90 T31 0.94 T51 0.93 
T12 1.05 T32 0.93 T52 0.91 
T13 1.08 T33 1.06 T53 1.01 
T14 1.02 T34 0.92 T54 0.92 
T15 1.01 T35 0.90 T55 0.90 
T19 1.08 T39 0.98   
T20 1.08 T40 0.90   

 

Table-3. Optimum real power loss values obtained for practical 191 utility (Indian) system by IEA &EFA. 

Real power Loss (MW) EFA IEA 

min 149.001 148.241 
max 152.786 151.995 

average 149.276 148.615 
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6. CONCLUSION  

In this paper, both the improved evolutionary algorithm and enriched firefly algorithm has been 

successfully implemented to solve Optimal Reactive Power Dispatch problem. The proposed algorithms have 

been tested in practical 191 (Indian) utility system. Simulation results show the robustness of proposed 

algorithms for providing better optimal solution in decreasing the real power loss. The control variables 

obtained after the optimization by both algorithms are well within the limits. 

 

REFERENCES  

Alsac, O. and B. Scott, 1973. Optimal load flow with steady state security. IEEE Transaction. PAS: 745-751. 

Berizzi, B.C., M. Merlo and M. Delfanti, 2012. A ga approach to compare orpf objective functions including secondary 

voltage regulation. Electric Power Systems Research, 84(1): 187–194. 

Canizares, C.A., A.C.Z. De Souza and V.H. Quintana, 1996. Comparison of performance indices for detection of proximity 

to voltage collapse. IEEE Transactions on Power Systems, 11(3): 1441-1450. 

Deeb, N. and S.M. Shahidehpur, 1990. Linear reactive power optimization in a large power network using the 

decomposition approach. IEEE Transactions on Power Systems, 5(2): 428-435. 

Eleftherios, A.I., G.S. Pavlos, T.A. Marina and K.G. Antonios, 2010. Ant colony optimisation solution to distribution 

transformer planning problem. Internationl Journal of Advanced Intelligence Paradigms, 2(4): 316 – 335. 

Hobson, E., 1980. Network consrained reactive power control using linear programming. IEEE Transactions on Power 

Systems PAS, 99(4): 868-877. 

Hu, Z., X. Wang and G. Taylor, 2010. Stochastic optimal reactive power dispatch: Formulation and solution method. 

International Journal of Electrical Power and Energy Systems, 32(6): 615 – 621. 

Lee, K.Y., Y.M. Park and J.L. Oritz, 1993. Fuel –cost optimization for both real and reactive power dispatches. IEE Proc, 

131C(3): 85-93. 

Lee, K.Y., Y.M. Paru and J.L. Oritz, 1985. A united approach to optimal real and reactive power dispatch. IEEE 

Transactions on Power Apparatus and Systems, PAS, 104: 1147-1153. 

Mangoli, M.K. and K.Y. Lee, 1993. Optimal real and reactive power control using linear programming. Electr. Power Syst. 

Res, 26: 1-10. 

Monticelli, A., M.V.F. Pereira and S. Granville, 1987. Security constrained optimal power flow with post contingency 

corrective rescheduling. IEEE Transactions on Power Systems: PWRS, 2(1): 175-182. 

Roy, P., S. Ghoshal and S. Thakur, 2012. Optimal var control for improvements in voltage profiles and for real power loss 

minimization using biogeography based optimization. International Journal of Electrical Power and Energy 

Systems, 43(1): 830 – 838. 

Storn, R. and K. Price, 1997. Differential evolution. Available from http://www1.icsi.berkeley.edu/storn/code.html. 

 

 

 

 

Online Science Publishing is not responsible or answerable for any loss, damage or liability, etc. caused in relation 
to/arising out of the use of the content. Any queries should be directed to the corresponding author of the article. 

 

http://www1.icsi.berkeley.edu/storn/code.html

