Canadian Journal of Agriculture and Crops

Vol. 1, No. 2, 43-49, 2016

Documentation and Conservation of Wild Edible Plants in Ado- Ekiti Region of Ekiti State, Nigeria

Science Publishing

J. Kayode¹ --- S. M. Akinluyi²

^{1,2}Department of Plant Science and Biotechnology, Ekiti State University, Ado-Ekiti, Nigeria

(Corresponding Author)

ABSTRACT

A survey of wild edible plants was carried out in Ado-Ekiti region with the aim of documenting wild edible plants species (WEPs) in the study area, determine their abundance and propose strategies that would help in the conservation of the rare species. A rapid appraisal method was used. Visits were made to four randomly selected communities in the region where semi-structured questionnaire guide was used to elicit information from the respondents. Interviews were also carried out with groups of respondents as well as key informants. A total of 47 WEPs which belonged to 32 families were identified in the region. The various ethnobotanical utilizations of the WEPs were defined. The species were not cultivated hence respondents depended on wildlings of the species. The abundance scale used in this study revealed that 10 of the WEPs were presently rare. Strategies that would conserve the rare species were proposed.

Keywords: Wild edible plants, Conservation, Nigeria.

DOI: 10.20448/803.1.2.43.49

Citation | J. Kayode; S. M. Akinluyi (2016). Documentation and Conservation of Wild Edible Plants in Ado- Ekiti Region of Ekiti State, Nigeria. Canadian Journal of Agriculture and Crops, 1(2): 43-49.

Copyright: This work is licensed under a Creative Commons Attribution 3.0 License

Funding : This study received no specific financial support.

Competing Interests: The authors declare that they have no competing interests.

History : Received: 6 June 2016/ Revised: 17 June 2016/ Accepted: 21 June 2016/ Published: 27 June 2016

Publisher: Online Science Publishing

1. INTRODUCTION

Wild edible plants (WEPs) are plants that grow spontaneously in self-maintaining populations in natural or semi-natural ecosystems and exist independently of direct human action [1]. They are endowed with one or more parts that can be used for food [2] and / or medicine. WEPs are locally available especially during the times of drought or conflict-driven famine. They tolerate water stress better than their domesticated relatives through the possession of an innate resilience to rapid climate change, which is often lacking in exotic species. The gathering and use of wild plants is part of the cultural history of a community hence they form part of the people's local identity and traditions [3] dishes made of wild foods are often identified as functional foods that is foods with medicinal properties [4].

Also WEPs provide greater benefits to vulnerable populations. They are low-input, low cost option for increasing nutrition and decreasing the need to spend limited cash resources on food [5] and medicine. Their

use is based on local ecological knowledge. In Nigeria, deforestation has caused a severe reduction in the population of wild species. This gross reduction has also resulted to sharp decline and / or loss in the local knowledge about WEPs [6]. At present, there is lack of accurate database on the available botanicals in the country [7]. Recent initiative tends to suggest that the biodiversity erosion of these species should be prevented.

Consequent on the above, it is now expedient that information of WEPs are documented, conserved and passed on from generation to generation. This study aimed at documenting WEPs in the study area, determine their abundance and propose strategies that would help in the conservation of the rare species.

2. MATERIALS AND METHODS

2.1. The Study Area

Ado-Ekiti region (7⁰40'N, 5⁰15'E) constituted the present Ado Ekiti Local Government area of Ekiti State, Nigeria. The region has a tropical humid hot climate with two seasons, rainy and dry seasons. The rainy season lasts from March to October and the dry seasons, November to February [8]. The soil composition of the area consisted of high percentages of sands, silt and clay [9]. The population, according to the 2006 census was 308, 621 [10]. The people are majorly of the Ekiti sub-ethnic group of Yoruba.

2.2. Methods

Four communities located within the region were randomly selected. Communities selected were Igbo Aso, Ago Aduloju, Arewa and Ilasa. In each community, ten respondents were randomly selected and interviewed with the aid of semi-structured questionnaire matrix. The interviews which were aimed at accessing the traditional knowledge of the respondents on the WEPs, were conducted with fairly open framework, focused and two-way communication.

The WEPs and their edible parts were identified. Their method(s) of preparation and usage were identified and recorded. Voucher specimens of the identified species were collected and later deposited at the herbarium of the Department of Plant Science and Biotechnology, Ekiti State University, Ado-Ekiti, Nigeria. The relative abundance of the species in the communities sampled was determined using the time taken to physically sight the species in each community. The species were considered abundant when sighted in less than 1hour, moderately abundant when sighted within 1 and 2 hours and rare when sighted above 2 hours.

Group interviews were conducted in order to determine group consensus and define respondents' indigenous knowledge on the species. Each group was made up of at least four respondents. Key informants made up of Officials of Agriculture Development Project and Forestry Division were identified and interviewed. Secondary information was obtained from records and internet.

3. RESULTS AND DISCUSSION

A total of 47 WEPs were identified. These species belonged to 32 families. Table 1 revealed that the families Asteraceae and Euphorbiaceae had six and five species respectively, families Amaranthaceae and Mimosaceae have three species each and families Clusiaceae and Sterculiaceae had two species each. Other families had one species each (Table1). Most of these species were uncultivated but grow widely in the wild.

S/N	WEP Species	Family	Vernacular Name
1.	Aerva lanata (L.) Juss. Ex Schult.	Amaranthaceae	Efunle
2.	Aframomum melegueta K. Schum	Zingiberaceae	Atare
3.	Ageratum conyzoides L.	Asteraceae	Pakududu
4.	Albizia adianthifolia (Schumach) W.Wight	Mimosaceae	Ayere
5.	Alstonia boonei De willd	Apocynaceae	Ahun
6.	Amaranthus lividus Linn.	Amaranthaceae	Keke omo adie
7.	Amaranthus viridis L.	Amaranthaceae	Tete- atetedaye
8.	Ananas comosus (L) Merr	Bromeliaceae	Ekinkun (Ibile}
9.	Artocarpus altilis (Parkinson) Forsberg	Moraceae	Berefuutu
10.	Blighia sapida K. D. Koniig	Sapindaceae	lsin
11.	Boerhavia diffusa L.	Nyctaginaceae	Etipa elila
12.	Brachystegia eurycoma Harms	Caesalpiniaceae	Eku
13.	Bridelia ferruginea Benth	Euphorbiaceae	Ira
14.	Buccholzia coriacea Engl.	Capparaceae	Obi ata/alata
15.	Carpolobia lutea G. Don	Polygalaceae	Otupe, Atetedaye
16.	Chrysophyllum albidum G. Don	Sapotaceae	Agbalumo
17.	Citrus aurantium L.	Rotaceae	Ganiganin
18.	Cola millenii K. Schum	Sterculiaceae	Obi edun
19.	Cola verticillata (Thonn.) Stapf	Steculiaceae	Obi abidan
20.	Costus afer Ker. Gawl	Costaceae	Irekeomode
21.	Crassocephalum crepidioides (Benth.) S. Moore	Asteraceae	Rorowo
22.	Crassocephalum rubens (Juss. ex Jacq.) S. Moore	Asteraceae	Ewe ebolo/ ebire
23.	Croton zambesicus Mull. Arg.	Euphorbiaceae	Ajekobale
24.	Cucurbita pepo L.	Cucurbitaceae	Elegede
25.	Culcasia scandens P. Beauv.	Aroceae	Agunmona
26.	Cylicodiscus gabunensis Harms.	Mimosaceae	Odekowose
27.	Dracaena mannii Baker	Dracaenaceae	Peregun
28.	Garcinia kola Heckel	Clusiaceae	Orogbo
29.	Gossypium arboreum L.	Malvaceae	Owu
30.	Harungana madagascariensis Lam ex. Poir	Clusiaceae	Arunje
31.	Heliotropium indicum L.	Boraginaceae	Apariigun
32.	Ipomea involucrata P. Beauv.	Convolvulaceae	Alukerese
33.	Rorke) Baill	Irvingiaceae	Oro
34.	Khaya ivorensis A. Juss	Meliaceae	Gedu
35.	Launea taraxacifolia (Willd.) Amin ex. C. Jeffrey.	Asteraceae	Yanrin
36.	Mallotus subulatus Mull. Arg.	Euphorbiaceae	Pepe
37.	Microdesmis puberula Hook. F. ex Planch	Pandaceae	Aapata
38.	Parkia biglobosa (Jacq.) R. Br. ex G. Don	Mimosaceae	Iru
39.	Plukenetia conophora Mull. Arg.	Euphorbiaceae	Asala
40.	Pterocarpus mildbraedii Harms	Papilionaceae	Oha
41.	Solanum nigrum L.	Solanaceae	Efoodu
42.	Sparganophorus sparganophora (L) C. Jeffrey.	Asteraceae	Ewuro-odo
43.	Spondias mombin L.	Anacardiaceae	lbo
44.	Lalinum fruticosum (L) Juss	Portulacaceae	Egunre
45.	I ragia benthami	Euphorbiaceae	Esinsin
46.	Vernonia amygdalina Delile	Asteraceae	Ewuro
47.	Xylopiaa ethiopica (Dunal) A. Rich	Annonaceae	Erunje

Table-1. Some	WEPs found in	Ado Ekiti and	d their abundance	status

Source: Field Study, 2015

Field observation made within the study region revealed that some of the species have been domesticated, though at low rate. These include *A.artilis, B. sapida, S. mombins* and *V. amygdalina.* The

various ethnobotanical utilizations of the WEPs are shown in Table 2. Field observation revealed that respondents were quite familiar with the medicinal values of plant species in their environment thus confirming the earlier observations of Dahlberg and Trygger [11]; Bruschi et. al. [12] and Corrigan *et. al.* [13]. The abundance scale used in this study revealed that 10 of the WEPs were presently rare (Table 3).

S/N	WEP Species	Parts Used	Food and / or Medicinal Value(s)
1.	A. adianthifoliat	Leaves	Convulsion, Fever
2.	A. altilis	Leaves, Fruits	Hypertension, Diabetes
3.	A. boonei	Stem bark	Malaria
4.	A. comosus	Leaves	Typhoid fever
5.	A. conyzoides	Leaves	Dizziness
6.	A. lanata	Leaves	Back pain
7.	A. lividus	Leaves	Vegetable
8.	A. melegueta	Leaves, Seeds	Malaria, Typhoid fever, Measles
9.	A. viridis	Leaves	Dysentery, Inflammation, Constipation
10.	B. eurycoma	Stem bark	Rheumatism
11.	B. coriacea	Stem bark, Roots, Fruits	Headache, Cough, Infertility problems
12.	B. diffusa	Leaves, Roots	Diuretic, Diabetes
13.	B. ferruginea	Stem bark, Leaves	Cough, Malaria
14.	B. sapida	Fruits	Ophthalmic, Conjunctivitis
15.	C. afer	Leaves	Stroke
16.	C. albidum	Leaves, Fruits	Diabetes, Fever
17.	C. aurantium	Fruits	Weight loss
18.	C. crepidioides	Leaves	Vegetable
			Blood purifier
19.	C. gabunensis	Stem bark	Back pain
20.	C. lutea	Leaves	Gonorrhoea, Malaria, Anti-ulcer
21.	C. millenii	Seeds	Fever, Dysentery
22.	C. pepo	Seeds	Bedwetting
23.	C. rubens	Leaves	Vegetable, Constipation, Laxative
24.	C. scandens	Stem bark	Tooth ache, Inflammation
25.	C. verticillata	Fruits	Heart problems
26.	C. zambesicus	Fruits	Epilepsy, Menstrual cycle problems, Dysentery
27.	D. mannii	Leaves	Pile
28.	G. arboreum	Seeds	Malaria
29.	G. kola	Fruits	Cold, Diabetics
30.	H. indicum	Leaves	Diabetes
31.	H. madagascariensis	Leaves	Gonorrhoea
32.	I. gabonensis	Seed	Loss of weight
33.	I. involucrate	Leaves	Stroke, Dizziness, Hypertension
34.	K. ivorensis	Stem bark	Typhoid fever
35.	L. taraxacifolia	Leaves	Vegetable, Diabetics, Tooth ache
36.	M. puberula	Stem bark	Foetus development
37.	M. subulatus	Leaves	Stomach troubles
38.	P. biglobosa	Fruits, Seeds	Pile
39.	P. conophora	Fruits	High blood pressure, Tooth ache
40.	P. mildbraedii	Leaves	Malaria
41.	S mombin	Leaves Stembark Fruits	Cough

Table-2. Ethnobotanical Utilization of WEPs in Ado-Ekiti Region

42.	S. nigrum	Leaves	Vegetable, Blood purifier
43.	S. sparganophora	Leaves	Vegetable, Cold, Back ache, Children convulsion
44.	T. benthami	Leaves	Miscarriage
45.	T. fruticosum	Leaves	Hypertension, Pile
46.	V. amygdalina	Leaves	Vegetable, Malaria, Diabetics, Stomach ache
47.	X. ethiopica	Leaves, Stem bark, Roots	Dizziness, Rheumatism

Source: Field Study, 2015

S/N	Species
1.	A. boonei
2	A. lunata
3	B. eurycoma
4	C. gabunensis
5	C. zambesicus
6	H. madagascariensis
7	K. ivorensis
8	M. puberula
9	P. mildbraedii
10	X. Ethiopica

Table-3. Checklist of Rare WEPs in Ado-Ekiti Region

Source: Field Study, 2015

The respondents' indigenous knowledge (Table 4) revealed that wildlings of the rare WEPs were available in the study area thus indicating that the preservation of the wild species could be advantageous in the study area. Wildlings preservation could be advocated to ensure their availability in the study area. Respondents were quite aware that all the rare species could be propagated from their seeds. This attributes tend to insinuate that respondents might be able to nurture these species if cultivated as they were quite familiar with the act of cultivating from seeds. Already, the rare species were known to thrive well and their ethnomedicinal values have been established in the study area. These features could enhance their domestication in the study area.

Also, Table 4 revealed that respondents were conscious of the fact that some of the rare species could be propagated from cuttings. These include *M. puberula*, and *P. mildbraedii*. The inherent advantages of this method were analyzed by respondents in Table 4. The potential of viable economic returns and/or production of insect resistant and durable woody product guaranteed by some of these rare species, as identified by respondents in *K. ivorensis* and *X. ethiopica*, could also be utilized as incentives to the cultivation of the species.

The WEPs, like the previous observation of Kayode and Agude [14] have considerable advantages to the aboriginal communities in terms of ready availability, affordability even to the resource poor, effective with no side effects when used as medicine. The forest that has continued to serve as their major source of supply is being deforested wantonly. Kayode and Omotoyinbo [15] observed that the supply from the forest is no longer sustainable due to the unprecedented deforestation, increase use of fire in farm preparations and increase in land fragmentation in the study area. Similarly, harvesting methods utilized on these species are mostly

predatory and annihilative [16]. Thus the need to embark on both in-situ and ex-situ conservation measures on these species cannot be over-emphasized. These according to Shinwari and Khan [17] will offer twin advantages of protecting the species in their natural habitats as well as the production of viable individuals for re-introduction to natural environment. Also, most of the species should be domesticated. The public should be enlightened on the dangers inherent in the genetic erosion of these species.

Respondents' Indigenous Knowledge	Conservation Potentials	WEPs
Wildlings of WEPs in Table 3 are available in study area	(a) Preservation of wildlings on farmlands should be encouraged.(b) Transplantation of wildlings (for cultivation) should be encouraged	All WEPs in Table 3 above.
Could be propagated by seeds	(a) Cultivation of WEPs is possible in the study area as respondents were quite familiar with cultivation from seeds(b) Sources of supply of planting propagules are guaranteed.	All WEPs in Table 3 above.
Could be propagated from cuttings	 (a) Cultivation of propagules of desirable character could be enhanced (b) Fast growth is assured (c) Shorter 'gestation' period is assured. 	M. puberula, P. mildbraedii
WEPs thrive well in forest areas	The study are is located in the rainforest vegetation hence the species are suitable for cultivation in the study area	All WEPs in Table 3 above.
Thrive very well in the river banks	Riverbanks abound tremendously in the study area	A. boonei, H. madagascariensis
Flowers towards the end of dry season	Seeds are quite abundant for cultivation at the onset of rains	H. madagascariensis
Produce termite-resistant wood	Promising economic returns assured as wood will be of high demands	X. ethiopica
Produce wood good for construction and furniture	Promising economic returns assured as wood will be of high demands	K. ivorensis, X. ethiopica
Have medicinal importance	Incentive to its conservation and/or domestication	All WEPs in Table 3 above.

Table-4. Conservation Potentials of Respondents' Indigenous Knowledge on WEPs in Ado-Ekiti Region

Source: Field Study, 2015

REFERENCES

- Heywood, V. Use and potential of wild plants in farm households. FAO Farm Systems Management Series. Food and Agriculture Organisation, Rome, Italy. 1999. [online] URL: <u>http://www.fao.org/docrep/003/w8801e/w8801e00.htm</u>.
- [2] Kallas J. Edible wild plants. Wild foods from dirt to plate. Utah: Layton, Gibbs Smith, 2010.
- [3] Heinrich M, Nebel S, Leonti M, Rivera D, Obón C. Local Food- Nutraceuticals': Bridging the gap between local knowledge and global needs. Pp 1-17. In Heinrich M, Müller WE, Galli C (Eds). Local Mediterranean Food Plants and Nutraceuticals. Basel: Karger, 2006.
- [4] Pieroni A, Quave CL. Eating and Healing: Traditional food as medicine. Pp. 101-129. In Pieroni A and Price LL (Eds). Eating and Healing: Traditional food as medicine. Binghamton, NY: The Haworth Press, 2006.

- [5] Shumsky S, Hickey GM, Johns T, Pelletier B, Galaty J. Institutional factors affecting wild edible plant (WEP) harvest and consumption in semi-arid Kenya. Land Use Policy. 2014. 38: 48-69. http://dx.doi.org/10.1016/j.landusepol.2013.10.014
- Bhogaonkar PY, Vishal RM, Prachi PK. Documentation of Wild Edible Plants of Melghat Forest, Dist. Amravati, Maharashtra State, India. Ethnobotanical Leaflets. 2010, 14: 751-758.
- [7] Kayode J. Conservation in Nigeria Perspective. Akolawole Publishers, Ado-Ekiti, Nigeria. 2006, 52pp.
- [8] Kayode J and Faluyi MA. Studies on self and cross compatibility on soybean (G.max) in a tropical environment.
 Nigeria Journal of Botany. 1994, 7, 55-61.
- [9] Kayode J, Ademiluyi B. Effect of tillage methods on weed control and maize performance in southwestern Nigeria location. Journal of Sustainable Agriculture, 2004, 23(3): 39-45.
- [10] NPC. Population Distribution by Sex, State, LGA and Senatorial District. National Population Commission, Abuja;2010.
- [11] Dahlberg AC, Trygger SB. Indigenous medicine and primary health care: The importance of lay knowledge and use of medicinal plants in rural South Africa. 2009. Hum. Ecol. 37:79–94. doi: 10.1007/s10745-009-9217-6.
- [12] Bruschi P, Morgan M, Mancini M, Signorini A. Traditional healers and lay people: A qualitative and quantitative approach to local knowledge on medicinal plants in Muda (Mozambique). J. Ethnopharmacol. 2011 138:543–563. doi: 10.1016/j.jep.2011.09.055.
- [13] Corrigan BM, Van Wyk BE, Geldenhuys CJ, Jardine JM. Ethnobotanical plant uses in the KwaNibela Peninsula, St Lucia, South Africa. South Afr. J. Botany. 2011, 77: 346–359. doi: 10.1016/j.sajb.2010.09.017.
- [14] Kayode J, Agude MC. Ethnobotanical control of dermatological disorders in Akoko Region of Ondo State, Nigeria. Journal of Biology and Nature. 2015, 4(3), 152-159.
- [15] Kayode J, Omotoyinbo MA. Ethnobotanical utilization and conservation of chewing sticks plant species in Ekiti State, Nigeria. Research Journal of Botany. 2009. 4(1):1-9.
- [16] Kayode J, Ogunleye T. Checklist and Status of Plant Species Used as Spices in Kaduna State of Nigeria. Research Journal of Botany. 2008; 3 (1), 35-40.
- [17] Shinwari MI, Khan MA. Folk use of medicinal herbs of Magalla Hills National Park, Islambabad. Journal of Ethnopharmacology. 2000, 69, 45-56.

Online Science Publishing is not responsible or answerable for any loss, damage or liability, etc. caused in relation to/arising out of the use of the content. Any queries should be directed to the corresponding author of the article.